🗱 Ficha Técnica – Válvula 6Y6GA

Introdução

A 6Y6GA é uma tetrodo de feixe direcionado (Beam Power Tube) desenvolvida pela RCA no final dos anos 1930 como uma alternativa mais econômica e de baixa tensão à famosa 6L6.

Projetada para fornecer potência significativa mesmo com tensões de placa mais baixas (150–200 V), tornou-se muito popular em rádios, amplificadores e transmissores de pequena potência, especialmente em aparelhos com transformadores compactos.

A versão "GA" (Glass A) possui envelope de vidro alongado, com maior dissipação térmica e maior resistência a arco interno.

A 6Y6GA foi usada em circuitos Classe A e AB, e é valorizada até hoje por sua resposta suave e som quente, ideal para amplificadores de áudio vintage e projetos de baixa tensão.

Estrutura Interna

- Tipo: Tetrodo de feixe de potência
- Função: Amplificação de potência (áudio / RF)
- Elementos: Placa, Grade de Controle (G1), Grade de Tela (G2), Cátodo e Feixes Direcionadores
- Aquecimento indireto
- Envoltório: Vidro alto tipo GA Base octal (B8A)
- Dissipação de placa moderada com excelente eficiência em baixa tensão

Parâmetro Valor

Tipo Tetrodo de feixe de potência

Aplicação típica Amplificador de potência / modulador /

áudio

Envoltório Vidro – Base Octal (B8A)

Parâmetro	Valor
-----------	-------

Tensão de aquecimento (Uf) 6,3 V

Corrente de aquecimento (If) 0,7 A

Tensão máxima da placa (Va máx.) 200 V

Tensão máxima da grade de tela (Vg2

máx.)

135 V

Corrente de placa típica 72 mA

Corrente de tela típica 6 mA

Dissipação máxima da placa 12 W

Dissipação máxima da tela 2 W

Transcondutância (gm) 5 000 µmho

Base Octal (B8A)

Peso aproximado 25 g

♣ Dados de Operação – Classe A (Áudio)

Valor

Tensão de placa (Va) 180 V

Tensão de tela (Vg2) 135 V

Tensão de grade (Vg1) -14 V

Corrente de placa (la) 72 mA

Corrente de tela (Ig2) 6 mA

Potência de saída (Classe A single-ended) 5 W

Distorção harmônica total 6 %

Impedância de carga ótima $5 000 \Omega$

Fator de amplificação (µ) 9

Parâmetro Valor

Resistência interna (ri) 25 k Ω

← Dados de Operação – Classe AB1 (Push-Pull)

Parâmetro Valor

Tensão de placa (Va) 250 V

Tensão de tela (Vg2) 180 V

Tensão de grade (Vg1) –18 V

Corrente de repouso total 110 mA

Potência de saída (par) 13 – 14 W

Distorção harmônica total 2,5 %

Impedância de carga ótima (placa-a-placa) 8 000 Ω

Name - Pinagem - Base Octal (B8A)

Pino Conexão

- 1 Sem conexão
- 2 Filamento
- 3 Placa
- 4 Grade de tela (G2)
- 5 Grade de controle (G1)
- 6 Sem conexão
- 7 Filamento
- 8 Cátodo + Feixes Direcionadores

Nota: Filamento entre pinos 2 e 7.

Cátodo e feixes direcionadores interligados no pino 8.

Aplicações Típicas

- Amplificadores de áudio (Classe A ou AB, 5–14 W).
- Transmissores de baixa potência e moduladores AM.
- Osciladores e reguladores de tensão controlada.
- Substituição direta da 6V6 em circuitos de baixa tensão.
- Projetos Hi-Fi retrô e guitarra vintage, com som quente e compressão suave.

Equivalentes e Substituições

Modelo	Diferença / Observação
12Y6	Mesma válvula com filamento de 12,6 V
25Y6	Versão com filamento de 25 V
6Y6G	Mesma estrutura, envelope tipo "shoulder ST"
6Y6GT	Envelope mais curto, mesmo desempenho elétrico
6L6	Similar, mas suporta tensões mais altas
6V6	Substituto funcional em baixa potência
6W6GT	Parâmetros semelhantes, maior corrente de placa
EL33 / 6P25	Equivalentes europeus aproximados

▲ Cuidados de Operação

- Evitar tensões de placa acima de 200 V.
- A válvula não deve ser polarizada como 6L6 possui características de baixa tensão.
- Usar resistor de grade de 470 Ω a 1 k Ω em G2 para limitar corrente.
- Garantir ventilação adequada; dissipação de 12 W exige chassi aberto.
- Aguardar 15 s de aquecimento antes de aplicar alta tensão.

Curvas Características (descrição)

- la × Va (G2 constante): linear até 200 V, saturação suave acima disso.
- la × Vg1: corte gradual próximo de –20 V; operação ótima entre –10 e –
 16 V.
- Curva de carga: apresenta resposta estável mesmo com variações moderadas de tensão da rede.

Observações Históricas

A 6Y6 foi lançada pela RCA em 1938 como alternativa à 6L6, oferecendo mesmo timbre e potência moderada com tensão de placa reduzida, o que permitia circuitos mais simples e baratos.

Durante a Segunda Guerra Mundial, foi usada em rádios militares portáteis e transmissões móveis.

Nos anos 1950, a 6Y6GA (versão de vidro alto) tornou-se padrão em amplificadores pequenos, rádios e equipamentos industriais. Hoje é muito valorizada por restauradores e audiófilos por sua excelente resposta de médios e graves, compressão natural e timbre "suave e vintage" — ideal para amplificadores single-ended de 5 W ou push-pull de 12 W.

? Curiosidade

Em amplificadores de guitarra retrô, a 6Y6GA pode ser usada com transformador de saída de 5 k Ω e tensão de 180 V, produzindo 5 W single-ended com um timbre quente e ligeiramente saturado — um som clássico de blues e jazz vintage.